- 10 Definieren Sie die folgenden Begriffe: a) koordinative Bindung; b) Komplex; c) Chelatligand (6 P)
 - Das Löslichkeitsprodukt des Salzes Silberchromat, Ag₂CrO₄, beträgt 1.4·10⁻¹² mol³/l³. Berechnen die Löslichkeit dieses Salzes in a) reinem Wasser b) in einer 0.02 molaren Lösung von AgNO₃ (c) n einer 0.02 molaren Lösung von Na₂CrO₄. (7 P)
 - 12. a) Berechnen Sie den pH-Wert einer Lösung aus 1.575 g NH₄Cl und 12.5 ml einer 4 molaren Lösung von NH₃. Der pK_B-Wert von NH₃ beträgt 9.25. b) Wie ändert sich der pH-Wert dieser Lösung bei Zugabe von 0.600 g festem NaOH? (8 P).
 - 13. Geben Sie an, ob Lösungen der folgenden Stoffe in Wasser sauer, alkalisch oder neutral reagieren. a) K₂SO₄; b) K₃PO₄; c) Fe(NO₃)₃; d) NH₄(CH₃COO); e) KCN. Angaben dazu: pK_B (NH₃) = 9.25; pK_S (CH₃COOH) = 4.75; pK_S (HCN) = 9.41 (5 P)
 - 14 Geben Sie die Reaktionsgleichungen an für die Reaktion von a) Wasserstoffperoxid mit Permanganat zu Braunstein (MnO₂) in alkalischer Lösung; b) Wasserstoffperoxid mit Iodid in schwach basischer Lösung und c) die Disproportionierung von Wasserstoffperoxid (7 P).
 - 15. Berechnen Sie die Spannung einer galvanischen Zelle bestehend aus einem Aluminiumblech, welches in 0.35 molare Al(NO₃)₃-Lösung taucht, und einer Kupferelektrode, welche in eine 2 molare Lösung von CuSO₄ eintaucht. Angaben dazu: E⁰ (Al³⁺/Al) = 1.660 V; E⁰ (Cu/Cu²⁺) = 0.341 V. b) Geben Sie die Reaktionsgleichung der in dieser Zelle ablaufenden Reaktion an. (5 P)
 - A ∈ = EVata ∈ Anade

 16. Die Gleichgewichtskonstante für die nach der Gleichung: 2 HCOOH ≒ HC(OH)₂⁺ + HCOO⁻ verlaufende Autoprotolysereaktion der Ameisensäure beträgt bei 25° C 2.24·10⁻¹⁴. Die Dichte der Ameisensäure beträgt 1.105 g/cm³. Berechnen Sie daraus a) die Stoffmengenkonzentration der HCOO⁻ Ionen und b) die freie Reaktionsenthalpie ΔG. (8 P)

 AG = -R · T · Lα K

Naturkonstanten: $h = 6.6262 \cdot 10^{-34} \text{ J·s}, N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}, R = 8.31441 \text{ J·K}^{-1} \cdot \text{mol}^{-1}; F = 96484.6 \text{ C·mol}^{-1}, 1 \text{ eV} = 1.602 \cdot 10^{-19} \text{ J; Ruhemasse des Protons} = 1.672649 \cdot 10^{-27} \text{ kg}$

Ich wünsche viel Erfolg bei der Bearbeitung der Klausur!

Klausureinsicht: Freitag, 13. 03. 2009 in der Zeit von 11:00 bis 11:30 Uhr, H 43.

Die 2. Nachklausur findet am Freitag, dem 3. April, in der Zeit von 9-11 Uhr in den Hörsälen H 37, H43 und H44 statt.